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3.1 Introduction

In intertemporal resource allocation problems with no terminal date, price sys-
tems which characterize efficient or optimal allocations have figured promi-
nently since the pioneering contribution by Malinvaud (1953). The method of
duality theory that has been developed to study such problems relies on convex
analysis and may be viewed as an extension of the corresponding theory for
static or finite horizon allocation problems. The purpose of this survey is to
introduce the reader to this method by showing how it has been applied in the
literature dealing with optimal intertemporal allocation, when future utilities
are discounted, which constitutes only a part (although a significant one) of
the class of problems referred to above.

A major accomplishment of this literature is the result that, in a very gen-
eral framework of capital accumulation (often referred to in the literature as
a reduced-form model), optimal programs may be characterized by the ex-
istence of dual variables, interpreted as “shadow prices”, such that at these
prices the given program satisfies the so-called “competitive conditions” and the
“transversality condition”. The competitive conditions are analogous to those
in static or finite horizon optimality problems, and involve myopic (generalized)
intertemporal profit maximization. The fundamental difference stems from the
infinite-horizon nature of the problem, and is captured by the transversality
condition.

The usefulness of this central result may be described as follows. Sufficient
conditions (in terms of shadow prices) for a program to be optimal can be used
to check whether a candidate program is optimal, if one has a good idea of
1 Discussion over the years with many persons has influenced my understanding of

the subject matter covered in this essay. They include David Cass, Swapan Das-
gupta, Ali Khan, Mukul Majumdar, Lionel McKenzie, Kazuo Nishimura, Bezalel
Peleg, Debraj Ray and Itzhak Zilcha.



56 Tapan Mitra

shadow prices that support such a program. This makes duality theory a prin-
cipal alternative to dynamic programming methods in solving for an optimal
program. Necessary conditions (in terms of shadow prices) for a program to
be optimal can be used to obtain qualitative properties of an optimal program
without necessarily solving for an optimal program.

Even though the theory of optimal growth dates back to the seminal contri-
bution of Ramsey (1928), versions of the “price chracterization result”, referred
to above, were developed almost forty years later, in the papers of Gale (1967),
McFadden (1967) and McKenzie (1968). Following Ramsey’s lead, the princi-
pal concern of these papers was the theory of undiscounted optimal growth
in general capital accumulation models. Subsequently, methods of duality the-
ory were applied to the discounted case by Peleg (1970) and Peleg and Ryder
(1972). However, it is only with the contribution of Weitzman (1973) that we
have a completely satisfactory price characterization result for the discounted
case. The setting for his result is a very general and flexible framework of capi-
tal accumulation (described here in Section 3.2), and his approach (combining
elements of duality theory and dynamic programming) makes the logic of the
result (and the assumptions needed for its validity) entirely transparent. We
present the basic characterization result, following his approach, in Section 3.3.

Dual variables have been used very effectively in the literature on optimal in-
tertemporal allocation in obtaining another major result, namely the existence
of a non-trivial stationary optimal program, supported by “quasi-stationary”
shadow prices. Versions of this result appear in Sutherland (1970) and Peleg
and Ryder (1974). But, for the general framework described in Section 3.2,
the result was developed later by Flynn (1980) and McKenzie (1982). The ap-
proach used in these two papers is to establish the existence of a discounted
golden-rule (analogous to a golden-rule in the undiscounted case) by a fixed
point argument, and then support this discounted golden-rule by appropriate
dual variables. We present this theory in Section 3.4.

The fact that there exists a stationary optimal program with quasi-stationary
price support allows one to revisit the basic price characterization result (of
Section 3.3), and develop an alternative version of it which helps to identify
non-optimal competitive programs in a finite number of periods. The transver-
sality condition is an asymptotic condition, and can never be verified in finite
time. It turns out that a convenient period-by-period condition can replace the
transversality condition in the price characterization theorems, and so a viola-
tion of this condition in any period immediately signals non-optimality. Such
a period-by-period condition was first proposed and established by Brock and
Majumdar (1988) in the undiscounted case, and the theory for the discounted
case was developed subsequently in Dasgupta and Mitra (1988). We present
this theory in Section 3.5.

Although the transversality condition is both necessary and sufficient for
optimality of competitive programs, there is a fairly wide and interesting class
of models in which the competitive conditions alone are sufficient to ensure
optimality, and the transversality condition is superfluous. That is, programs



3. Duality Theory 57

which are competitive necessarily satisfy the transversality condition and are
therefore optimal. These are models which satisfy a “reachability” property, in-
troduced by Dasgupta and Mitra (1999a). Thus, the competitive and transver-
sality conditions are independent restrictions only in models where the reach-
ability property is violated. This finding is presented in Section 3.6.

A framework of optimal growth that has received considerable attention in
the literature is one in which utility is derived from consumption alone (referred
to as the “consumption model”). It is useful to view this model as a special
case of the general framework described in Section 3.2, and apply the results
developed for that framework to this particular case. This displays the flexibility
of the reduced-form model, and provides an alternative approach to some of
the duality results obtained exclusively for the consumption model by Peleg
and Ryder (1972, 1974). We present this material in Section 3.7. Of particular
interest is the result that, in the consumption model, the competitive condition
can be split up into two conditions, one involving purely consumption decisions
and the other involving purely production decisions.

Weitzman (1976) showed (in a continuous time optimal growth model) that
along an optimal program, the net national product at each instant of time
represents the annuity equivalent of its dynamic social welfare from that time
onwards. In Section 3.8, as an application of the results on price characterization
of optimality in the consumption model, we revisit his interesting economic
interpretation of the Bellman equation of dynamic programing. We provide
a discrete time analog of his result, displaying the elementary nature of the
argument needed to obtain it.

As already indicated in the opening paragraph of this section, the scope of
our survey is deliberately limited. To help the reader see some of the connections
with the literature that we do not cover, Section 3.9 contains some bibliographic
comments on the various sections.

3.2 A General Intertemporal Allocation Model

The framework is described by a triplet (Ω, u, δ), where Ω, a subset of Rn
+×Rn

+,
is a transition possibility set, u : Ω → R is a utility function defined on this
set, and δ is the discount factor satisfying 0 < δ < 1. A typical element of Ω
is written as an ordered pair (x, y); this means that if the current state is x,
then it is possible to be in the state y in one period.

We will be using the following assumptions:
(A.1) (i) (0, 0) ∈ Ω; (ii) (0, y) ∈ Ω implies y = 0.
(A.2) Ω is (i) closed, and (ii) convex.
(A.3) There is ξ such that “(x, y) ∈ Ω and ‖x‖ > ξ” implies “ ‖y‖ <

‖x‖”.
(A.4) If (x, y) ∈ Ω and x′ ≥ x, 0 ≤ y′ ≤ y, then (i) (x′, y′) ∈ Ω and

(ii) u(x′, y′) ≥ u(x, y).
(A.5) u is (i) upper semicontinuous and (ii) concave on Ω.
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(A.6) There is ζ ∈ R, such that (x, y) ∈ Ω implies u(x, y) ≥ ζ.
A program from y ∈ Rn

+ is a sequence {y(t)}∞0 such that y(0) = y, and
(y(t), y(t+ 1)) ∈ Ω for t ≥ 0.

A program {y(t)}∞0 from y ∈ Rn
+ is an optimal program if

∞∑
t=0

δtu(y′(t), y′(t+ 1)) ≤
∞∑

t=0

δtu(y(t), y(t+ 1))

for every program {y′(t)}∞0 from y.
The following “boundedness properties” of our model are well-known.
(R.1) Under assumptions (A.3) and (A.4) (i),

(i) If (x, y) ∈ Ω, then ‖y‖ ≤ max [ξ, ‖x‖].
(ii) If {y(t)}∞0 is a program from y ∈ Rn

+, then ‖y(t)‖ ≤
max [ξ, ‖y‖] for t ≥ 0.

The existence of an optimal program in this framework is also a standard
result.

(R.2) Under assumptions (A.1), (A.2), (A.3), (A.4) (i), (A.5) (i) and
(A.6), if y ∈ Rn

+, there exists an optimal program from y.
Given (R.2), there is an optimal program {y∗(t)}∞0 from each y ∈ Rn

+. We
define

V (y) =
∞∑

t=0

δtu(y∗(t), y∗(t+ 1))

V is known as the value function. By (A.4), V is non-decreasing, and by (A.2)
and (A.5), V is concave.

3.3 Characterization of Optimal Programs in Terms of
Dual Variables

The principal results on duality theory in infinite horizon optimization models
relate optimal programs with programs which are “supported” by dual variables
known as shadow prices. At the given shadow prices, the “supported” program
maximizes the generalized profit at each date among all feasible activities (pairs
(x, y) in the transition possibility set) and is called a competitive program.
These results are analogous to the first and second fundamental theorems of
welfare economics in general equilibrium theory.

The infinite horizon entails that an additional condition, known as the
transversality condition, is involved in relating competitive to optimal pro-
grams.

Results which provide sufficient conditions (in terms of shadow prices) for
a program to be optimal are often useful in checking that a candidate pro-
gram is optimal, if one has a good idea of shadow prices that support such a
program. Such “price characterization” results make duality theory a principal
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alternative to dynamic programming methods in solving for an optimal pro-
gram. Results which provide necessary conditions (in terms of shadow prices)
for a program to be optimal are useful in inferring qualitative properties of an
optimal program without necessarily solving for an optimal program. Together,
these results can be a powerful tool in the hands of an optimal growth theorist
to address a variety of problems.

This section provides these “price characterization” results in the context
of the general intertemporal allocation model described in the previous section.

A sequence {y(t), p(t)}∞0 is a competitive program from y ∈ Rn
+ if {y(t)}∞0

is a program from y, p(t) ∈ Rn
+ for t ≥ 0, and for all t ≥ 0 we have

δtu(y(t), y(t+ 1)) + p(t+ 1)y(t+ 1) − p(t)y(t)
≥ δtu(x, y) + p(t+ 1)y − p(t)x for all (x, y) ∈ Ω (3.1)

A competitive program {y(t), p(t)}∞0 from y ∈ Rn
+ is said to satisfy the

transversality condition if
lim

t→∞ p(t) y(t) = 0 (3.2)

3.3.1 When Are Competitive Programs Optimal?

Theorem 3.3.1. If {y(t), p(t)}∞0 is a competitive program from y ∈ Rn
+ which

satisfies the transversality condition, then {y(t)}∞0 is an optimal program from
y.

Proof. Let {y′(t)}∞0 be any program from y. Using (3.1), we have for t ≥ 0 :

δt[u(y′(t), y′(t+ 1)) − u(y(t), y(t+ 1))]
≤ [p(t+ 1)y(t+ 1) − p(t)y(t)] − [p(t+ 1)y′(t+ 1) − p(t)y′(t)] (3.3)

Summing (3.3) from t = 0 to t = T :

T∑
t=0

δt[u(y′(t), y′(t+ 1)) − u(y(t), y(t+ 1))]

≤ [p(T + 1)y(T + 1) − p(0)y(0)] − [p(T + 1)y′(T + 1) − p(0)y′(0)]
= p(T + 1)y(T + 1) − p(T + 1)y′(T + 1)
≤ p(T + 1)y(T + 1) (3.4)

Since the quantity
∑T

t=0 δ
tu(y′(t), y′(t + 1)) converges as T → ∞, and so

does
∑T

t=0 δ
tu(y(t), y(t+1)), we can take limits on both sides of (3.4), by using

(3.2), and we have:

∞∑
t=0

δtu(y′(t), y′(t+ 1)) −
∞∑

t=0

δtu(y(t), y(t+ 1)) ≤ 0

which proves that {y(t)}∞0 is an optimal program from y.
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Remarks:
(i) It is worth noting that the above result does not depend on the convexity

of the transition possibility set or the concavity of the utility function.
(ii) In Theorem 3.3.1, the transversality condition (3.2) can be replaced by

lim inf
t→∞ p(t)y(t) = 0. (3.5)

(iii) The significance of the transversality condition (3.2) was first noted
by Malinvaud (1953) in his study of intertemporal efficiency. Since then, it
has been extensively used in the study of intertemporal optimality (as well as
efficiency). The extremely simple method of proof is a variant of Malinvaud’s
proof in the study of efficiency; it was effectively introduced in the multisectoral
optimality literature most notably by Gale (1967).

(iv) Notice that the convergence of the discounted utility sum is not essential
to the method. Thus, in general, we can define a program {y(t)}∞0 from y to
be optimal (in Brock’s (1970) terminology “weakly-maximal”) if

lim inf
T→∞

T∑
t=0

δt[u(y′(t), y′(t+ 1)) − u(y(t), y(t+ 1))] ≤ 0

for every program {y′(t)}∞0 from y. Then (3.1) and (3.5) lead to the optimality
of {y(t)}∞0 by the same method. The point to be noted is that, in this general
form, no assumptions are needed on Ω, u, δ.

3.3.2 When Are Optimal Programs Competitive?

The converse to Theorem 3.3.1 relies heavily on the “convex structure” of the
model. The proof we report here follows closely the approach of Weitzman
(1973): the interesting features of his technique of proof are (a) the use of an
induction argument to obtain the “dual variables”, and (b) the combination
of the dynamic programming approach exploiting the value function, with the
duality approach exploiting the separation theorem. These ideas are formalized
in Lemmas 1 and 2 below, which are then used to obtain Theorem 3.3.2, the
basic result of this subsection.

Lemma 3.3.1. Suppose {ȳ(t)}∞0 is an optimal program from ȳ >> 0. Then
there is p(0) ∈ Rn

+ such that:

V (ȳ(0)) − p(0)ȳ(0) ≥ V (y) − p(0)y for all y ∈ Rn
+. (3.6)

Proof. Define the sets A and B as follows.
A = {(α, β) ∈ Rn+1 : V (y) − V (ȳ(0)) ≥ α, (ȳ(0) − y) ≥ β for some

y ∈ Rn
+}

B = {(α, β) ∈ Rn+1 : (α, β) >> 0}
Clearly, A and B are non-empty and convex. Also A ∩ B = φ. For if

there is (α, β) ∈ A ∩ B, then there is y ∈ Rn
+, such that V (y) > V (ȳ(0))
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and ȳ(0) >> y. By the “free-disposal” assumption (A.4), ȳ(0) >> y implies
V (ȳ(0)) ≥ V (y), which contradicts V (y) > V (ȳ(0)).

By a standard separation theorem (see, for example, Theorem 3.5, p. 35 in
Nikaido (1968)) there is (µ, ν) ∈ Rn+1

+ , with (µ, ν) �= 0, such that:

µα+ νβ ≤ 0 for all (α, β) ∈ A (3.7)

Thus, using the definition of A, we have:

µ(V (y) − V (ȳ(0)) + ν(ȳ(0) − y) ≤ 0 for all y ∈ Rn
+ (3.8)

We claim that µ �= 0. For if µ = 0, then ν > 0 and using (3.8),

ν(ȳ(0) − y) ≤ 0 for all y ∈ Rn
+ (3.9)

But since ȳ(0) = y >> 0, we can pick y = ȳ(0)/2 to contradict (3.9). This
establishes our claim, so that µ > 0.

Define p(0) = (ν/µ), and use (3.8) to get

[V (y) − V (ȳ(0))] + p(0)(ȳ(0) − y) ≤ 0 for all y ∈ Rn
+

which, after transposition of terms, is (3.6).

We call x̂ ∈ Rn
+ sufficient if there is ŷ ∈ Rn

++, such that (x̂, ŷ) ∈ Ω.

Lemma 3.3.2. Suppose {ȳ(t)}∞0 is an optimal program from ȳ. Suppose, also,
that there is some sufficient vector x̂ in Rn

+. If there is some t ≥ 0, and
p(t) ∈ Rn

+ such that:

δtV (ȳ(t)) − p(t)ȳ(t) ≥ δtV (y) − p(t)y for all y ∈ Rn
+ (3.10)

then there is p(t+ 1) ∈ Rn
+ such that:

δt+1V (ȳ(t+1))−p(t+1)ȳ(t+1) ≥ δt+1V (y)−p(t+1)y for all y ∈ Rn
+ (3.11)

and:
δtu(ȳ(t), ȳ(t+ 1)) + p(t+ 1)ȳ(t+ 1) − p(t)ȳ(t)

≥ δtu(x, y) + p(t+ 1)y − p(t)x for all (x, y) ∈ Ω (3.12)

Proof. Since {ȳ(t)}∞0 is an optimal program, we have V (ȳ(t)) = u(ȳ(t), ȳ(t +
1)) + δV (ȳ(t + 1)). Also, for all (x, y) ∈ Ω, we have V (x) ≥ u(x, y) + δV (y).
Using these facts in (3.10), we have

θ(t+ 1) ≡ δtu(ȳ(t), ȳ(t+ 1)) + δt+1V (ȳ(t+ 1)) − p(t)ȳ(t)
≥ δtu(x, y) + δt+1V (y) − p(t)x for all (x, y) ∈ Ω

Thus,

θ(t+ 1) − δtu(x, y) + p(t)x ≥ δt+1V (y) for all (x, y) ∈ Ω (3.13)
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Define two sets A and B as follows:
A = {(α, β) ∈ Rn+1 : α ≤ δt+1V (y′) − [θt+1 − δtu(x, y) + p(t)x] and β ≤

(y − y′), for some (x, y) ∈ Ω, and for some y′ ∈ Rn
+}

B = {(α, β) ∈ Rn+1 : (α, β) >> 0}
Clearly, A and B are non-empty and convex (since u is concave on Ω and V

is concave on Rn
+). Also, since V is non-decreasing, we can use (3.13) to infer

that A ∩ B = φ. Hence, by a standard separation theorem (see, for example,
p. 35 in Nikaido (1968)), there is (µ, ν) ∈ Rn+1

+ , with (µ, ν) �= 0, such that:

µα+ νβ ≤ 0 for all (α, β) ∈ A (3.14)

Using the definition of A and (3.14), we have

µ[θt+1 − δtu(x, y) + p(t)x] − νy ≥ µδt+1V (y′) − νy′

for all (x, y) ∈ Ω and all y′ ∈ Rn
+. (3.15)

Put x = ȳ(t) and y = ȳ(t+ 1) in (3.15) to get:

µ[δt+1V (ȳ(t+ 1))] − νȳ(t+ 1) ≥ µ[δt+1V (y′)] − νy′ for all y′ ∈ Rn
+ (3.16)

Put y′ = ȳ(t+ 1) in (3.15) to get:

µ[δtu(ȳ(t), ȳ(t+ 1)) − p(t)ȳ(t)] + νȳ(t+ 1)
≥ µ[δtu(x, y) − p(t)x] + νy for all (x, y) ∈ Ω (3.17)

We claim now that µ �= 0. For if µ = 0, then by (3.16), νȳ(t+ 1) ≤ νy for
all y′ ∈ Rn

+, and by (3.17), νȳ(t + 1) ≥ νy for all y, such that (x, y) ∈ Ω for
some x. Thus,

νȳ(t+ 1) = νy for all y such that (x, y) ∈ Ω for some x (3.18)

Since there is a sufficient vector x̂, there is ŷ >> 0, such that (x̂, ŷ) ∈ Ω.
Also, (x̂, 0) ∈ Ω by “free-disposal” in Ω. Using these facts in (3.18), we have
0 = ν0 = νȳ(t+1) = νŷ, so that ν = 0. Thus, we get (µ, ν) = 0, a contradiction.
This establishes our claim, and we have µ > 0.

Defining p(t+ 1) = (ν/µ), we can use (3.16) to get (3.11), and (3.17) to get
(3.12), establishing the Lemma.

Theorem 3.3.2. Suppose {ȳ(t)}∞0 is an optimal program from ȳ >> 0. Sup-
pose, also, that there is some sufficient vector x̂ in Rn

+. Then, there is a
sequence {p(t)}∞0 with p(t) ∈ Rn

+ for t ≥ 0, such that:

δtV (ȳ(t)) − p(t)ȳ(t) ≥ δtV (y) − p(t)y for all y ∈ Rn
+ (3.19)

and:

δtu(ȳ(t), ȳ(t+ 1)) + p(t+ 1)ȳ(t+ 1) − p(t)ȳ(t)

≥ δtu(x, y) + p(t+ 1)y − p(t)x for all (x, y) ∈ Ω (3.20)

and:
lim

t→∞ p(t)ȳ(t) = 0 (3.21)
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Proof. Using Lemmas 1 and 2, there is a sequence {p(t)}∞0 with p(t) ∈ Rn
+ for

t ≥ 0,such that (3.19) and (3.20) hold. Putting y = 0 in (3.19), we have

δt[V (ȳ(t)) − V (0)] ≥ p(t)ȳ(t) for t ≥ 0 (3.22)

Denoting max[ξ, ‖ȳ‖] by B(ȳ) and defining z = B(ȳ)e, where e = (1, ..., 1)
in Rn

+, we have ȳ(t) ≤ z for t ≥ 0, and so V (ȳ(t)) ≤ V (z) for t ≥ 0. Using this
in (3.22),

δt[V (z) − V (0)] ≥ p(t)ȳ(t) ≥ 0 for t ≥ 0.

Now, since δt → 0 as t→ ∞, we have p(t)ȳ(t) → 0 as t→ ∞, which establishes
(3.21).

Remarks:
(i) Peleg (1970) establishes a version of Theorem 3.3.2 by applying the

separation theorem in the space of all bounded infinite sequences (of vectors in
Rn), known as �n∞. This method is also followed in Peleg and Ryder (1972).

(ii) In the statement of Theorem 3.3.2, the initial stock, ȳ, is assumed to
be strictly positive, and it is also assumed that there is some sufficient vector,
x̂ in Rn

+. Under these assumptions, we note that we can find 0 < λ < 1, such
that λx̂ ≤ ȳ. Now, since there is ŷ >> 0, such that (x̂, ŷ) ∈ Ω, we have
(λx̂, λŷ) ∈ Ω, and by free-disposal, (ȳ, λŷ) ∈ Ω. Since λŷ >> 0, we see that ȳ
itself is a sufficient vector. Thus, under the assumptions of Theorem 3.3.2, we
have (a) ȳ >> 0 and (b) ȳ is a sufficient vector. On the other hand, if ȳ >> 0
and ȳ is a sufficient vector, then the assumptions used in Theorem 3.3.2 are
obvously satisfied.

(iii) Conditions (3.19) and (3.21) in the above result are not “independent”.
For a competitive program it can be shown that (3.19) is equivalent to (3.21).
That (3.19) implies (3.21) is clear from the proof of Theorem 3.3.2. The converse
implication can be derived by following the proof of Theorem 3.3.1.

3.3.3 An Example

Theorem 3.3.1 shows that a competitive program satisfying a transversality
condition is optimal, and Theorem 3.3.2 shows that an optimal program is
competitive and satisfies a transversality condition. This still does not settle
the question of whether the transversality condition is needed in the statement
of Theorem 3.3.1 to make it valid. It is logically possible, for example, that a
competitive program automatically satisfies the transversality condition and is
therefore optimal. (For more on this line of thought, see Section 3.6 below).
In this subsection, to settle this issue, we give an example of a framework
(which is a special case of the one described in Section 3.2) and a competitive
program in that framework (with a uniquely defined associated price sequence)
which violates the transversality condition and is not optimal. Thus, in general,
Theorem 3.3.1 would be invalid if the transversality condition is dropped from
its statement.
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The framework is the standard aggregative neoclassical growth model,
which is described by (f, w, δ), where f is the production function, satisfying:

f(x) = 4x1/2 for all x ≥ 0

w is the welfare function satisfying:

w(c) = 2c1/2 for all c ≥ 0

and δ is the discount factor, satisfying δ = 1/2. To convert this model to
the framework analyzed in Section 3.2, we can define the transition possibility
set by Ω = {(x, y) ∈ R2

+ : y ≤ f(x)}, and the utility function by u(x, y) =
w(x − f−1(y)) for all (x, y) ∈ Ω. [For more on this kind of conversion, see
Section 3.7 below].

Define a sequence {k(t)} as follows: k(0) = 2, k(1) = 4
√

2−1, and for t ≥ 0,

k(t+ 2) = f(k(t+ 1)) − [f(k(t)) − k(t+ 1)]
k(t+ 1)

(3.23)

We first verify that (3.23) does, in fact, uniquely define a sequence. To this end,
we claim that, if for some t ≥ 0, we have (k(t), k(t+1)) satisfying k(t) > 1 and
f(k(t)) > k(t+ 1) > k(t), then k(t+ 2), defined uniquely by (3.23) satisfies:

k(t+ 1) > 1 and f(k(t+ 1)) > k(t+ 2) > k(t+ 1) (3.24)

First, we have k(t + 1) > k(t) > 1 by hypothesis, so k(t + 1) > 1. Second, we
have:

0 <
[f(k(t)) − k(t+ 1)]

k(t+ 1)
< [f(k(t)) − k(t+ 1)]

so that (3.23) implies that (i) k(t+2) > f(k(t+1))−[f(k(t))−k(t+1)] > k(t+1),
since k(t + 1) > k(t) and f is increasing; and (ii) k(t + 2) < f(k(t+ 1)). This
establishes our claim.

Since (k(0), k(1)) = (2, 4
√

2 − 1) satisfies k(0) > 1 and f(k(0)) = 4
√

2 >
4
√

2 − 1 = k(1) > 2 = k(0), we can use (3.24) repeatedly to uniquely define
{k(t)} by (3.23). Further, for all t ≥ 0, we must have (3.24) holding along such
a sequence.

Note that {k(t} is monotonically increasing and bounded above by ξ = 16,
so it must converge to some k > 1. Then, using (3.23) and (3.24), we must
have k = f(k) − {[f(k) − k]/k} and f(k) ≥ k respectively, so that f(k) − k =
{[f(k) − k]/k}, and consequently f(k) = k (since k �= 1). Thus k = ξ = 16.

Define {x(t), y(t), c(t)} as follows: x(0) = k(0) = 2, y(0) = 4, c(0) = 2, and
for t ≥ 1,

x(t) = k(t), y(t) = f(x(t− 1)), c(t) = y(t) − x(t) (3.25)

Note that, by (3.24), we have c(t) > 0 for t ≥ 0, and by (3.23), we have:

w′(c(t)) = δf ′(x(t))w′(c(t+ 1)) for all t ≥ 0 (3.26)
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the Ramsey-Euler equations for this framework. It is easy to check now that
{y(t)} is a program from y(0) = 4, and that (using the concavity of f and w,
and (3.26)), {y(t), p(t)} is a competitive program at the uniquely defined price
sequence {p(t)} given by:

p(t) = δtw′(c(t)) for t ≥ 0 (3.27)

By (3.23) and k(t) > 1 for t ≥ 0, we have c(t+ 1) < c(t) for t ≥ 1, and clearly
c(1) = 1 < c(0) = 2. Thus, c(t) ≤ 2 for t ≥ 0, so that u(y(t), y(t+1)) ≤ w(2) =
2
√

2 for all t ≥ 0. However, the sequence {y′(t)} defined by y′(t) = 4 for all
t ≥ 0 is clearly a program from y′(0) = 4, with u(y′(t), y′(t+1)) = w(3) = 2

√
3

for all t ≥ 0. Thus, {y(t)} is not an optimal program from y(0) = 4.
Since x(t) = k(t) → 16 as t → ∞, there is T such that k(t) ≥ 3, and so

f ′(x(t)) ≤ (2/3) for all t ≥ T. Using (3.26) and (3.27), we see that:

p(t+ 1) = p(0)/
t∏

s=0

f ′(x(s))

and so p(t) → ∞ as t → ∞. Since y(t) = f(x(t − 1)) → 16 as t → ∞, we have
p(t)y(t) → ∞ as t→ ∞, a violation of the transversality condition.

3.4 Duality Theory for Stationary Optimal Programs

3.4.1 Existence of a Stationary Optimal Stock via Duality Theory

The question of existence of a non-trivial stationary optimal stock has been
discussed extensively in the literature. Two treatments of the subject can be
found in Sutherland (1970) and Khan and Mitra (1986), who use a purely
primal approach, and Flynn (1980) and McKenzie (1982), who use the dual
variable approach. As an illustration of the power of duality methods, we will
provide an exposition of the topic using the latter approach.

An optimal program {y(t)}∞0 from y ∈ Rn
+ is a stationary optimal program

if y(t) = y(t+ 1) for t ≥ 0. A stationary optimal stock is an element y ∈ Rn
+,

such that {y}∞0 is a stationary optimal program. It is non-trivial if u(y, y) >
u(0, 0).

A discounted golden-rule stock is a stock ŷ with (ŷ, ŷ) ∈ Ω, such that:

u(ŷ, ŷ) ≥ u(x, y) for all (x, y) ∈ φ(ŷ)

where φ(ŷ) = {(x, y) ∈ Ω : δy − x ≥ δŷ − ŷ}.
A modified golden-rule is a pair (ŷ, p̂) with (ŷ, ŷ) ∈ Ω, p̂ ∈ Rn

+ such that
for all (x, y) ∈ Ω,

u(ŷ, ŷ) + δp̂ŷ − p̂ŷ ≥ u(x, y) + δp̂y − p̂x
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An economy is δ− productive if there exists (a, b) ∈ Ω such that δb >> a.
It is δu−productive if there exists (a, b) ∈ Ω such that δb >> a and u(δb, b) >
u(0, 0).

It can be shown, by using the Kakutani fixed point theorem, that there
exists a discounted golden rule stock (see Theorem 3.4.1 below). Further, when
the economy is δ − productive, any discounted golden rule stock, ŷ, can be
supported by a price vector, p̂, so that the pair (ŷ, p̂) is a modified golden-rule,
and {ŷ} is a stationary optimal program from ŷ (Theorem 3.4.2). Finally, when
the economy is δu − productive, then a simple consequence of Theorem 3.4.2
is that there exists a non-trivial stationary optimal stock (Corollary 3.4.1).

Theorem 3.4.1. There exists a discounted golden-rule stock.

The proof of Theorem 3.4.1 can be obtained from Khan and Mitra (1986),
and with some modifications, from McKenzie (1982).

Theorem 3.4.2. (i) If the economy is δ−productive, and if ŷ is a discounted
golden-rule stock, then there is p̂ ∈ Rn

+ such that (ŷ, p̂) is a modified golden-rule.
(ii) if (ŷ, p̂) is a modified golden-rule, then {ŷ} is a stationary optimal pro-

gram from ŷ.

Proof. (i) Define the sets A and B as follows:

A = {(α, β) ∈ Rn+1 : α ≤ u(x, y) − u(ŷ, ŷ), and
β ≤ (δy − x) − (δŷ − ŷ) for some (x, y) ∈ Ω}

B = {(α, β) ∈ Rn+1 : (α, β) >> 0}
Note that A and B are non-empty, convex sets in Rn+1, and they are dis-
joint, since ŷ is a discounted golden-rule stock. Thus, by a standard separation
theorem, there is (µ, ν) ∈ Rn+1

+ with (µ, ν) �= 0, such that:

µα+ νβ ≤ 0 for all (α, β) ∈ A

This implies that for all (x, y) ∈ Ω,

µu(x, y) + ν(δy − x) ≤ µu(ŷ, ŷ) + ν(δŷ − ŷ) (3.28)

We claim that µ �= 0. For if µ = 0, then ν �= 0, and (3.28) implies that:

ν(δy − x) ≤ ν(δŷ − ŷ) for all (x, y) ∈ Ω (3.29)

Since the economy is δ − productive, there is (a, b) ∈ Ω satisfying δb >> a.
Using this in (3.29), we get 0 < ν(δb − a) ≤ ν(δŷ − ŷ) ≤ 0, a contradiction.
Thus, µ > 0, and defining p̂ = (ν/µ), we see from (3.28) that (ŷ, p̂) is a modified
golden-rule.

(ii) Define a sequence {p(t)} by:
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p(t) = δtp̂ for t ≥ 0

Then, using the definition of a modified golden-rule it is easy to check that for
all t ≥ 0, we have:

δtu(x, y) + p(t+ 1)y − p(t)x
≤ δtu(ŷ, ŷ) + p(t+ 1)ŷ − p(t)ŷ for all (x, y) ∈ Ω (3.30)

Further, since δ ∈ (0, 1), we have:

lim
t→∞ p(t)ŷ = 0 (3.31)

Thus, by Theorem 3.3.1, {ŷ} is a stationary optimal program from ŷ.

We now note the basic result on the existence of a non-trivial stationary
optimal stock as a simple consequence of the above results.

Corollary 3.4.1. If the economy is δu − productive, then there exists a non-
trivial stationary optimal stock.

Proof. Using Theorem 3.4.1, there is a discounted golden-rule stock, ŷ. Since
the economy is δ − productive, Theorem 3.4.2 can be applied to infer that ŷ
is a stationary optimal stock. Finally, since the economy is δu − productive,
we can infer that ŷ is a non-trivial stationary optimal stock, by definition of a
discounted golden rule.

3.4.2 Quasi-Stationary Price Support for Stationary Optimal
Programs

Using Theorems 3.4.1 and 3.4.2, we see that there always exists a stationary
optimal program {ŷ}, which is supported (in the sense of (3.30)) by a quasi-
stationary price sequence; that is, by a price sequence of the form p(t) = δtp̂ for
t ≥ 0. It turns out that any stationary optimal program {ŷ} can be supported
by a quasi-stationary price sequence, provided (ŷ, ŷ) is in the interior of Ω. That
is, compared to Theorem 3.3.2, one can choose the supporting price sequence
from a more restricted set when the optimal program happens to be stationary.
Our exposition of this result follows Sutherland (1967) and McKenzie (1986).

Theorem 3.4.3. Suppose {ŷ} is a stationary optimal program from ŷ, and
(ŷ, ŷ) ∈ intΩ. Then, there is p̂ such that:

(i) (ŷ, p̂) is a modified golden-rule, and
(ii) defining p̂(t) = δtp̂ for t ≥ 0, {ŷ, p̂(t)} is a competitive program from ŷ,

which satisfies the transversality condition.

Proof. Using Theorem 3.3.2, we know that there is a sequence {p(t)}, with
p(t) ∈ Rn

+ such that {ŷ, p(t)} is a competitive program from ŷ. Then, for each
t ≥ 0, we have:
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δtu(x, y) + p(t+ 1)y − p(t)x
≤ δtu(ŷ, ŷ) + p(t+ 1)ŷ − p(t)ŷ for all (x, y) ∈ Ω (3.32)

Denoting p(t)/δt by q(t) for each t ≥ 0, we have:

u(x, y) + δq(t+ 1)y − q(t)x
≤ u(ŷ, ŷ) + δq(t+ 1)ŷ − q(t)ŷ for all (x, y) ∈ Ω (3.33)

Since (ŷ, ŷ) ∈ intΩ, we have B > 0, such that ||q(t)|| ≤ B for all t ≥ 0.
Averaging the first (T + 1) inequalities in (3.33) gives:

u(x, y) − u(ŷ, ŷ) � δQ(T )(ŷ − y) − P (T )(ŷ − x) for all (x, y) ∈ Ω (3.34)

where
P (T ) =

1
T + 1

(q(0) + q(1) + ...+ q(T ))

and

Q(T ) =
1

T + 1
(q(1) + ...+ q(T + 1))

= P (T ) +
1

T + 1
(q(T + 1) − q(0))

Clearly, ||P (T )|| ≤ B for all T ≥ 0; so, there is a subsequence {Ti}, i = 1, 2, ...,
such that P (Ti) → p̂ � 0. Then Q(Ti) also converges to p̂, and (3.34) yields:

u(x, y) − u(ŷ, ŷ) � δp̂(ŷ − y) − p̂(ŷ − x) for all (x, y) ∈ Ω (3.35)

Thus (ŷ, p̂) is a modified golden-rule, establishing (i). The result in (ii) follows
by using the proof of (ii) in Theorem 3.4.2.

Remarks:
(i) Suppose (ŷ, ŷ) ∈ intΩ; then, {ŷ} is a stationary optimal program if and

only if there is p̂ ∈ Rn
+ such that (ŷ, p̂) is a modified golden-rule. This follows

from Theorem 3.4.2 (ii) and Theorem 3.4.3 (i).
(ii) Suppose (ŷ, ŷ) ∈ intΩ, and {ŷ} is a stationary optimal program. Then,

from Theorem 3.4.3 (i), it follows that ŷ is also a discounted golden-rule stock.

3.5 Replacing the Transversality Condition by a
Period-by-Period Condition

The transversality condition used in the price characterization results of opti-
mality (Theorems 3.3.1 and 3.3.2 of Section 3.3) is an asymptotic condition.
It cannot be verified in a finite number of periods, however large the number
of periods might be. It is, therefore, of some interest to investigate whether
the transversality condition can be replaced in such characterization results



3. Duality Theory 69

by a condition which might convey some information about optimality in a
finite number of periods (where the finite number of periods can be arbitrarily
“large”). It turns out that, for the class of stationary models we are consid-
ering, there is a convenient period-by-period condition which can replace the
transversality condition in the price characterization theorems. Our exposition
of this result follows Dasgupta and Mitra (1988).

To describe the results of this section, it is convenient to adopt the following
convention. If {y(t), p(t)} is a competitive program, then we denote the current
value price sequence associated with it by {q(t)}, where q(t) = p(t)/δt for
t ≥ 0. If {ŷ, q̂} is a modified golden-rule, then the present value price sequence
associated with it is denoted by {p̂(t)}, where p̂(t) = δtq̂ for t ≥ 0.

If {y(t)} is an optimal program, and (ŷ, q̂) is a modified golden-rule, then
Theorem 3.3.2 can be used to show the existence of a price sequence {p(t)}
such that {y(t), p(t)} is a competitive program, and the following inequality
holds:

(q(t) − q̂)(y(t) − ŷ) ≤ 0 for all t ≥ 0 (3.36)

(see Theorem 3.5.1 below). This raises the following question: if (ŷ, q̂) is a
modified golden-rule, and {y(t), p(t)} is a competitive program, such that the
period-by-period condition (3.36) is satisfied, then is {y(t)} an optimal pro-
gram ? If the stock ŷ is “proportionately expansible”, then the answer is in
the affirmative (see Theorem 3.5.2 below). The results are useful in identify-
ing non-optimal competitive programs. That is, if {y(t), p(t)} is a competitive
program, which is not optimal, then it must violate (3.36) for some period.
Further, if {y(t), p(t)} is a competitive program, for which {p(t)} is the unique
associated price sequence, and it violates (3.36) for some period t, then it can
be pronounced to be non-optimal. Note that this would not be possible by
using Theorem 3.3.2.

Theorem 3.5.1. Suppose there exists a sufficient vector. Let {y(t)} be an op-
timal program from ȳ >> 0, and let (ŷ, q̂) be a modified golden-rule. Then,
there is a price sequence {p(t)}, with p(t) ∈ Rn

+ for t ≥ 0, such that {y(t), p(t)}
is a competitive program, and:

(q(t) − q̂)(y(t) − ŷ) ≤ 0 for all t ≥ 0

Proof. By Theorem 3.3.2, there is a price sequence {p(t)}, with p(t) ∈ Rn
+ for

t ≥ 0, such that {y(t), p(t)} is a competitive program, and:

V (y(t)) − q(t)y(t) ≥ V (ŷ) − q(t)ŷ for all t ≥ 0 (3.37)

Since {ŷ, q̂} is a modified golden-rule, {ŷ, p̂(t)} is a competitive program, and
p̂(t)ŷ = δtq̂ŷ → 0 as t→ ∞. Thus, using remark (iii) following Theorem 3.3.2,
we have:

V (ŷ) − q̂ŷ ≥ V (y(t)) − q̂y(t) for all t ≥ 0 (3.38)

Adding (3.37) and (3.38) and transposing terms yields the desired result.
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For the converse result, we first establish some properties that hold for
competitive programs (Lemma 3.5.1), and then derive Theorem 3.5.2 from it.

Lemma 3.5.1. Suppose {y(t), p(t)} is a competitive program, and (ŷ, q̂) is a
modified golden-rule. Then :

(p(t+ 1)− p̂(t+ 1))(y(t+ 1)− ŷ) ≥ (p(t)− p̂(t))(y(t)− ŷ) for all t ≥ 0 (3.39)

Further, if (3.36) holds, then:

[(p(t+1)− p̂(t+1))(y(t+1)− ŷ)−(p(t)− p̂(t))(y(t)− ŷ)] → 0 as t→ ∞ (3.40)

Proof. Since {y(t), p(t)} is competitive, we have:

δtu(y(t), y(t+ 1)) + p(t+ 1)y(t+ 1) − p(t)y(t)
≥ δtu(ŷ, ŷ) + p(t+ 1)ŷ − p(t)ŷ for all t ≥ 0 (3.41)

Since {ŷ, p̂(t)} is competitive, we have:

δtu(ŷ, ŷ) + p̂(t+ 1)ŷ − p̂(t)ŷ
≥ δtu(y(t), y(t+ 1)) + p̂(t+ 1)y(t+ 1) − p̂(t)y(t) for all t ≥ 0(3.42)

Adding (3.41) and (3.42) and transposing terms yields (3.39).
Denoting (p(t) − p̂(t))(y(t) − ŷ) by µ(t) for t ≥ 0, we see (from (3.39))

that {µ(t)} is a monotonically non-decreasing sequence. If (3.36) holds, this
sequence is bounded above by 0. So, µ(t) converges as t → ∞. Clearly, this
implies that (3.40) must hold.

A stock y ∈ Rn
+ is called expansible if there is y′ >> y, such that (y, y′) ∈ Ω.

It is called proportionately expansible if there is λ > 1 such that (y, λy) ∈ Ω.
Clearly, if y is expansible, it is proportionately expansible. Also, note that if
(y, y) ∈ intΩ, then y is expansible.

Theorem 3.5.2. Suppose (ŷ, q̂) is a modified golden-rule and ŷ is proportion-
ately expansible. If {y(t), p(t)} is a competitive program from ȳ, which satisfies
(3.36), then:

(i) p(t)ŷ → 0 as t→ ∞, and
(ii) {y(t)} is an optimal program from ȳ.

Proof. Since {y(t), p(t)} is competitive, we have:

δtu(y(t), y(t+ 1)) + p(t+ 1)y(t+ 1) − p(t)y(t)
≥ δtu(ŷ, λŷ) + p(t+ 1)λŷ − p(t)ŷ for all t ≥ 0 (3.43)

Transposing terms, one gets:

δt[u(y(t), y(t+ 1)) − u(ŷ, λŷ)] + p(t+ 1)(y(t+ 1) − ŷ) − p(t)(y(t) − ŷ)
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≥ p(t+ 1)(λ− 1)ŷ (3.44)

Denoting (p(t) − p̂(t))(y(t) − ŷ) by µ(t) for t ≥ 0, we can write:

p(t)(y(t) − ŷ) = p̂(t)(y(t) − ŷ) + µ(t) for all t ≥ 0 (3.45)

Using (3.45) in (3.44), we obtain:

δt[u(y(t), y(t+ 1)) − u(ŷ, λŷ)] + p̂(t+ 1)(y(t+ 1) − ŷ) − p̂(t)(y(t) − ŷ)

+µ(t+ 1) − µ(t) ≥ p(t+ 1)(λ− 1)ŷ (3.46)

Denoting max{ξ, ||ȳ||} by B, we have y(t) ≤ Be, where e = (1, 1, ..., 1) in Rn.
Thus, u(y(t), y(t + 1)) ≤ u(Be, 0) for all t ≥ 0. Then, using Lemma 3.5.1, we
note that all the terms on the left hand side of (3.46) converge to zero as t→ ∞.
This establishes (i), since λ > 1.

By definition of µ(t) and (3.36), we have:

p(t)(y(t) − ŷ) = p̂(t)(y(t) − ŷ) + µ(t)
≤ p̂(t)(y(t) − ŷ)
≤ p̂(t)y(t)

Thus, we get:
p(t)y(t) ≤ p(t)ŷ + p̂(t)y(t) (3.47)

Since ‖y(t)‖ ≤ max [ξ, ‖ȳ‖] for t ≥ 0, and δ ∈ (0, 1), we have p̂(t)y(t) → 0
as t → ∞. Also, p(t)ŷ → 0 as t → ∞ by (i). Thus, by (3.47), we must have
p(t)y(t) → 0 as t→ ∞. By Theorem 3.3.1, {y(t), p(t)} is optimal from ȳ.

3.6 Are Competitive Programs Optimal?

We have seen that in general an infinite horizon competitive program is not
optimal (see the example in Section 3.3), and so Theorem 3.3.1 would be in-
valid if the transversality condition is dropped from its statement. However,
this still leaves open the possibility that for some classes of models, the phe-
nomenon observed in the example does not occur, and all competitive programs
are optimal. The approach to identify such models has been to specify a class of
transition possibility sets and utility functions such that the (myopic) compet-
itive condition itself restricts the rate at which accumulation of stocks can take
place; such a class can be conveniently described by some form of a “reachabil-
ity” condition. This topic has been investigated by Kurz and Starrett (1970),
and Dasgupta and Mitra (1999a,b), among others. We base our discussion here
on Dasgupta and Mitra (1999a).
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Reachability Condition:
There is an expansible stock ỹ such that, given any competitive program

{y(t), p(t)}, there is a program {y0(t)} from ỹ and a positive integer R such
that y0

R ≥ yR.
This condition says that, given a competitive program (from an arbitrary

initial stock) it is possible, through pure accumulation if need be, to reach the
stocks along the given competitive program at some far enough future date,
starting from the expansible stock ỹ.

Theorem 3.6.1. Suppose the Reachability Condition is satisfied. If {y(t), p(t)}
is a competitive program from ȳ ∈ Rn

+, then {y(t)} is an optimal program from
ȳ.

Proof. Since ỹ is expansible, there is z̃ >> ỹ such that (ỹ, z̃) ∈ Ω. Denote
(z̃ − ỹ) by k; then k >> 0. Using the competitive condition, we get, for all
t ≥ 0,

δtu(y(t), y(t+ 1)) + p(t+ 1)y(t+ 1) − p(t)y(t)
≥ δtu(ỹ, z̃) + p(t+ 1)z̃ − p(t)ỹ
= δtu(ỹ, z̃) + p(t+ 1)ỹ − p(t)ỹ + p(t+ 1)k (3.48)

Now consider any T ≥ 2. From (3.48), we have:

T−1∑
t=0

δtu(y(t), y(t+ 1)) + p(T )y(T )− p(0)y(0)

≥
T−1∑
t=0

δtu(ỹ, z̃) +
T−1∑

0

p(t+ 1)k + p(T )ỹ − p(0)ỹ (3.49)

The sequence {y′′(t), p′′(t)} defined by (y′′(t), p′′(t)) = (y(T + t), p(T + t))
for t ≥ 0 is clearly a competitive program from y(T ). By the reachability
condition, there is a program {y0(t)} from ỹ, and a positive integer R, such
that y0(R) ≥ y′′(R) = y(T + R). Defining {y′(t)} by y′(t) = ỹ for t = 0, ..., T,
and y′(t) = y0(t− T ) for t > T, we see that {y′(t)} is a program from ỹ, and:

y′(T ) = ỹ and y′(T +R) = y0(R) ≥ y′′(R) = y(T +R) (3.50)

Applying the competitive condition to (y′(t), y′(t+ 1)) ∈ Ω for each t ≥ T,
we have:

δtu(y(t), y(t+ 1)) + p(t+ 1)y(t+ 1) − p(t)y(t)
≥ δtu(y′(t), y′(t+ 1)) + p(t+ 1)y′(t+ 1) − p(t)y′(t) (3.51)

From (3.51), we have:
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T+R−1∑
t=T

δtu(y(t), y(t+ 1)) + p(T +R)y(T +R) − p(T )y(T )

≥
T+R−1∑

t=T

δtu(y′(t), y′(t+ 1)) + p(T +R)y′(T +R) − p(T )y′(T )(3.52)

From (3.49) and (3.52), we have:

T+R−1∑
t=0

δtu(y(t), x(t+ 1)) + p(T +R)y(T +R) − p(0)y(0)

≥
T−1∑
t=0

δtu(ỹ, z̃) +
T+R−1∑

t=T

δtu(y′(t), y′(t+ 1)) +
T−1∑
t=0

p(t+ 1)k

+p(T +R)y′(T +R) − p(T )y′(T ) + p(T )ỹ − p(0)ỹ (3.53)

Since p(t) ≥ 0, from (3.50) and (3.53), we have:

T+R−1∑
t=0

δtu(y(t), y(t+ 1)) −
T−1∑
t=0

δtu(ỹ, z̃)

−
T+R−1∑

t=T

δtu(y′(t), y′(t+ 1)) + p(0)(ỹ − y(0))

≥
T−1∑

0

p(t+ 1)k (3.54)

Denoting max{ξ, ||ȳ||} by B, we have y(t) ≤ Be, where e = (1, 1, ..., 1) in
Rn. Denoting max{ξ, ||ỹ||} by B′, we have y′(t) ≤ B′e, where e = (1, 1, ..., 1)
in Rn. Thus, u(y(t), y(t+ 1)) ≤ u(Be, 0), and u(y′(t), y′(t+ 1)) ≤ u(B′e, 0)for
all t ≥ 0. Then, using (A.6) and δ ∈ (0, 1), we see that the left hand side of
(3.54) is uniformly bounded above regardless of the value of T. Since k >> 0
and p(t) ≥ 0 for all t, it follows that

∑∞
0 p(t) < ∞, and so p(t) → 0 as t→ ∞.

Since ‖y(t)‖ ≤ max [ξ, ‖ȳ‖] for t ≥ 0, we have lim
t→∞p(t)y(t) = 0 and so, by

Theorem 3.3.1, the program {y(t)} is optimal from ȳ.

Given the abstract nature of the reachability condition, a simple multi-
sectoral model in which it can be directly verified would be helpful. We de-
scribe the production side of such a model by an n × n non-negative matrix
A = (aij), where i = 1, ..., n and j = 1, ..., n, and a strictly positive vector
b = (b1, ..., bn) >> 0. Here, aij and bj are respectively the amounts of the i−th
good and labor which are required per unit output of the j−th good. The total
amount of labor available for production is stationary and is normalized to 1.
For each j = 1, ..., n, it is assumed that there is some i = 1, ..., n such that
aij > 0. Thus, each production process requires a positive amount of labor as
well as a positive amount of some produced factor. Further, it is assumed that
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A is productive; that is, there is some ỹ >> 0 such that ỹ >> Aỹ and bỹ ≤ 1.
This essentially excludes the economically uninteresting case of a production
system which is unable to sustain some positive consumption levels for all of
the desired goods. The transition possibility set for this economy is:

Ω = {(x, y) ∈ R2n
+ : Ay ≤ x and by ≤ 1}

Welfare is derived from consumption, as given by a function w : Rn
+ → R,

which is continuous, concave and monotone on Rn
+. The (reduced form) utility

function is then defined by:

u(x, y) = w(x −Ay) for all (x, y) ∈ Ω

Consider any program {y(t)} from ȳ ∈ Rn
+. Denoting (1/minj bj) by B, we

have y(t) ≤ Be for all t ≥ 1, where e = (1, ..., 1) ∈ Rn. Since A is productive,
we have At → 0 as t→ ∞, so we can find a positive integer R ≥ 2, such that:

ARBe << ỹ

Now, define the sequence {y′(t)} as follows:

y′(0) = ỹ
y′(t) = AR−ty(R) for 1 ≤ t ≤ R− 1
y′(t) = y(t) for t ≥ R

⎫⎬⎭
It can be checked (see Dasgupta and Mitra (1999a) for the details) that {y′(t)}
is a program from ỹ. Since y′(R) = y(R), the reachability condition is satisfied.

3.7 Duality Theory in the Consumption Model

A model of optimal growth that has received considerable attention in the lit-
erature is one in which utility is derived from consumption alone (referred to
as the “consumption model”). In this section we describe the multisectoral ver-
sion of this model, show how it can be viewed as a special case of the general
framework described in Section 3.2, and apply the results developed for that
framework to this particular case. In terms of duality theory, the principal dif-
ference is that the competitive condition can be split up into two conditions,
one involving consumption decisions and the other involving production deci-
sions (see (3.56) and (3.57) below). Our exposition follows Dasgupta and Mitra
(1990).

3.7.1 The Model

Consider a framework described by a triplet (Ω,w, δ), where Ω, a subset of
Rn

+ ×Rn
+, is the technology set, w : Rn

+ → R is the period welfare function, and
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δ is the discount factor satisfying 0 < δ < 1. A typical element of Ω is written
as an ordered pair (x, y), where x represents the inputs of the n goods, and y
the outputs producible with inputs x.

We will need the following assumptions:
(B.1) (i) (0, 0) ∈ Ω; (ii) (0, y) ∈ Ω implies y = 0.
(B.2) Ω is (i) closed, and (ii) convex.
(B.3) There is ξ such that “(x, y) ∈ Ω and ‖x‖ > ξ” implies “‖y‖ <

‖x‖”.
(B.4) If (x, y) ∈ Ω and x′ ≥ x, 0 ≤ y′ ≤ y, then (x′, y′) ∈ Ω.
(B.5) w is (i) continuous, and (ii) concave.
(B.6) If c, c′ are in Rn

+, then (i) c′ ≥ c implies w(c′) ≥ w(c), and (ii)
c′ >> c implies w(c′) > w(c).

A plan from y ∈ Rn
+ is a sequence {x(t), y(t)}∞0 such that

y(0) = y; 0 ≤ x(t) ≤ y(t) and (x(t), y(t + 1)) ∈ Ω for t ≥ 0

Associated with a plan {x(t), y(t)}∞0 from y is a consumption sequence {c(t)}∞0
defined by

c(t) = y(t) − x(t) for t ≥ 0

A plan {x̄(t), ȳ(t)}∞0 from y is an optimal plan if

∞∑
0

δtw(c̄(t)) ≥
∞∑
0

δtw(c(t)) (3.55)

for every plan {x(t), y(t)}∞0 from y.
An optimal plan {x(t), y(t)}∞0 from y is a stationary optimal plan if

(x(t), y(t)) = (x(t+ 1), y(t+ 1)) for t ≥ 0. In this case we refer to a stationary
optimal plan as {x, y}∞0 with obvious interpretation, and to its associated sta-
tionary consumption sequence as {c}∞0 , where c = y−x. A stationary optimal
output is an element y ∈ Rn

+ such that there is a stationary optimal plan from
y. It is non-trivial if w(c) > w(0).

A sequence {x(t), y(t), p(t)}∞0 is a competitive plan from y if {x(t), y(t)}∞0
is a plan from y, p(t) ∈ Rn

+ for t ≥ 0, and for t ≥ 0,

δtw(c(t)) − p(t)c(t) ≥ δtw(c) − p(t)c for all c ∈ Rn
+ (3.56)

and

p(t+ 1)y(t+ 1) − p(t)x(t) ≥ p(t+ 1)y − p(t)x for all (x, y) ∈ Ω (3.57)

A modified golden-rule equilibrium is a triple (x̂, ŷ, p̂) with (x̂, ŷ) ∈ Ω,
p̂ ∈ Rn

+, such that denoting (ŷ − x̂) by ĉ, we have
(i) ĉ ≥ 0
(ii) w(ĉ) − p̂ĉ ≥ w(c) − p̂c for all c in Rn

+

(iii) p̂(δŷ − x̂) ≥ p̂(δy − x) for all (x, y) ∈ Ω
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3.7.2 Conversion to the Format of the General Model

Our objective, in this subsection, is to show that the consumption model can
be viewed as a particular case of the general framework of Section 3.2.

To this end, we define a feasible input correspondence, g : Ω → Rn
+ by

g(a, b) = {x : (x, b) ∈ Ω and x ≤ a}
Note that for each (a, b) ∈ Ω, a ∈ g(a, b) so g is non-empty valued. Also, for
each (a, b) ∈ Ω, g(a, b) is a bounded set (by definition) and a closed set, by
(B.2).

Next, we define a utility function, u : Ω → R by

u(a, b) = Max {w(a− x) : x ∈ g(a, b)}
Note that for each (a, b) ∈ Ω, g(a, b) is non-empty, compact, and w is contin-
uous. Thus, defining h(a, b) = {x̄ : x̄ ∈ g(a, b), and w(a − x̄) ≥ w(a − x) for
all x ∈ g(a, b)}, we note that h is a non-empty valued correspondence on Ω,
and u(a, b)[≡ w(a − x̄) for x̄ ∈ h(a, b)] is well-defined on Ω. It can now be
shown that, given (B.1) - (B.6), (Ω, u) satisfies (A.1) - (A.6) of Section 3.2 [see
Dasgupta and Mitra (1990) for the details].

Next, we want to consider plans in terms of the general framework of Section
3.2. Note that {x(t), y(t)}∞0 is a plan from y if and ony if {y(t)}∞0 is a program
from y, and x(t) ∈ g(y(t), y(t + 1)) for t ≥ 0. Furthermore, if {x̄(t), ȳ(t)}∞0
is an optimal plan from y, then clearly x̄(t) ∈ h(ȳ(t), ȳ(t + 1)) and so u(ȳ(t),
ȳ(t + 1)) = w(c̄(t)) for t ≥ 0. Also, if {x(t), y(t)}∞0 is a plan from y, then
w(c(t)) = w(y(t) − x(t)) ≤ u(y(t), y(t+ 1)). Using these facts, the inequality
in (3.55) can be rewritten as:

∞∑
0

δtu(ȳ(t), ỹ(t+ 1)) ≥
∞∑
0

δtu(y(t), y(t+ 1))

for every plan {x(t), y(t)}∞0 from y. In other words, {ȳ(t)}∞0 is an optimal
program from y. Conversely, if {ȳ(t)}∞0 is an optimal program from y, then
defining x̄(t) ∈ h(ȳ(t), ȳ(t + 1)) for t ≥ 0, {x̄(t), ȳ(t)}∞0 is clearly an optimal
plan from y.

3.7.3 Characterization of Optimal Plans in Terms of Dual Variables

An optimal plan can be characterized as a competitive plan satisfying a
transversality condition. The standard references for this result are Peleg
(1970) and Peleg and Ryder (1972). The (common) technique of proof of
these two papers consists in applying a separation theorem in the space of all
bounded infinite sequences (of vectors in Rn). Our main objective in presenting
this result is to draw attention to the fact that it can be derived as a special
case of Theorems 3.3.1 and 3.3.2, which we have noted for the general model.

We now formally state and prove our characterization results, by using the
corresponding results for the general model.
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Proposition 3.7.1. If {x(t), y(t), p(t)}∞0 is a competitive plan from y, and

lim
t→∞p(t) y(t) = 0 (3.58)

then {x(t), y(t)}∞0 is an optimal plan from y.

Proof. If {x(t), y(t), p(t)}∞0 is a competitive plan from y, then using (3.56),
(3.57), and x(t) = y(t) − c(t), one gets:

δtw(c(t)) + p(t+ 1) y(t+ 1) − p(t)y(t)

≥ δtw(c) + p(t+ 1)y − p(t)(c+ x) for all (x, y) ∈, Ω and c ∈ Rn
+ (3.59)

Note that x(t) ∈ g(y(t), y(t+ 1)), since (x(t), y(t+ 1)) ∈ Ω, and x(t) ≤ y(t).
For any x ∈ g(y(t), y(t+ 1)), since (x(t), y(t+ 1)) ∈ Ω and x ≤ y(t), defining
c = y(t)−x ≥ 0, and using (3.5), w(c(t)) ≥ w(c). Thus, x(t) ∈ h(y(t), y(t+1)),
and w(c(t)) = u(y(t), y(t+ 1).

Let (a, b) ∈ Ω. Then defining x ∈ h(a, b), and c = a− x, we have (x, b) ∈
Ω and c ≥ 0, so by (3.59),

δtu(y(t), y(t+ 1)) + p(t+ 1)y(t+ 1) − p(t)y(t)
≥ δtu(a, b) + p(t+ 1)b− p(t)a for all (a, b) ∈ Ω

Thus, {y(t), p(t)}∞0 is a competitive program from y, satisfying the transver-
sality condition. Hence, by Theorem 3.3.1, {y(t)}∞0 is an optimal program
from y. Since we have already checked that x(t) ∈ h(y(t), y(t + 1)), we can
conclude that {x(t), y(t)}∞0 is an optimal plan from y.

Proposition 3.7.2. Suppose {x(t), y(t)}∞0 is an optimal plan from y ∈ Rn
++.

Suppose, also, that there is some sufficient vector in Rn
+. Then, there is a

sequence {p(t)}∞0 with p(t) ∈ Rn
+ for t ≥ 0, such that

(i) {x(t), y(t), p(t)}∞0 is a competitive plan;
(ii) For all y ∈ Rn

+, and t ≥ 0,

δtV (y(t)) − p(t)y(t) ≥ δtV (y) − p(t)y (3.60)

and
lim

t→∞p(t) y(t) = 0. (3.61)

Proof. Since {x(t), y(t)}∞0 is an optimal plan from y, we have x(t) ∈ h(y(t),
y(t+1)), and {y(t)}∞0 is an optimal program from y. Hence, by Theorem 3.3.2,
there is a sequence {p(t)}∞0 such that p(t) ∈ Rn

+ for t ≥ 0, {y(t), p(t)}∞0 is
a competitive program from y, and (3.60), (3.61) hold. It remains to verify
(i). This is accomplished by showing that for each t ≥ 0, the price vector p(t)
provides the appropriate price support for both the consumption decision and
the production decision.

Given any t, define θt(c) = δtw(c) − p(t)c for all c ∈ Rn
+, and πt(x, y) =

p(t+ 1)y − p(t)x for all (x, y) ∈ Ω.
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Next, given t, we define the following two sets:
A(t) = {α : there exists c ≥ 0, satisfying θt(c) − θt(c(t)) > α}
B(t) = {α : there exists (x, y) ∈ Ω satisfying πt(x, y)− πt(x(t), y(t+ 1)) >

−α}
We claim that (for each t),

A(t) and B(t) are disjoint (3.62)

If (3.62) does not hold (for some t), there is some α which belongs to both A(t)
and B(t). Then, there is (x, y) ∈ Ω and c ≥ 0, such that θt(c) − θt(c(t)) > α,
and πt(x, y) − πt(x(t), y(t+ 1)) > −α. Thus, we get:

δtw(c) + p(t+ 1)y − p(t)(x+ c) > δtw(c(t)) + p(t+ 1)y(t+ 1) − p(t)y(t)

Defining a = (x + c), we have (a, y) ∈ Ω, and u(a, y) ≥ w(a − x) = w(c).
Thus, δtu(a, y)+p(t+1)y−p(t)a ≥ δtw(c)+p(t+1)y−p(t)(x+c). Also, since
x(t) ∈ h(y(t), y(t+ 1)), we have w(c(t)) = w(y(t) − x(t)) = u(y(t), y(t+ 1)).
Hence,

δtu(a, y) + p(t+ 1)y − p(t)a > δtu(y(t), y(t+ 1))
+p(t+ 1)y(t+ 1) − p(t)y(t)

which contradicts the fact that {y(t), p(t)}∞0 is a competitive program from y.
This establishes our claim (3.62).

Next, we note that, by definition of the sets A(t) and B(t),

(a) If α < 0, then α ∈ A(t), (b) If α > 0, then α ∈ B(t) (3.63)

Now suppose there is some c ∈ Rn
+, such that θt(c) > θt(c(t)). Then by

defining α = 1
2 [θt(c) − θt(c(t))], we have α > 0, and α ∈ A(t). By (3.63),

α ∈ B(t), which contradicts (3.62). Hence θt(c) ≤ θt(c(t)) for all c ∈ Rn
+,

which is (3.56).
Suppose there is some (x, y) ∈ Ω such that πt(x, y) > πt(x(t), y(t + 1)).

Then by defining α = − 1
2 [πt(x, y) − πt(x(t), y(t + 1))], we note that (−α) =

1
2 [πt(x, y) − πt(x(t), y(t + 1))], so α ∈ B(t), and α < 0. By (3.63), α ∈ A(t),
which contradicts (3.62). Thus πt(x, y) ≤ πt(x(t), y(t+ 1)) for all (x, y) ∈ Ω,
which is (3.57).

We have now shown that {x(t), y(t), p(t)}∞0 is a competitive plan from y
so that (i) holds. This completes the proof of the proposition.

3.7.4 Existence of a Stationary Optimal Output

The existence of a modified golden-rule equilibrium and a non-trivial stationary
optimal stock have been obtained in the literature by Peleg and Ryder (1974) by
using duality theory. This result can be obtained as a special case of Theorem
3.4.2 and Corrollary 3.4.1, which we have established for the general framework
of Section 3.2.
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Call the technology set δ − productive if there exists (x̄, ȳ) in Ω such that
δȳ >> x̄. Note that if Ω is δ-productive, then with the definition of u given in
Section 3.7.1, and assumptions (B.4) and (B.6), (Ω, u, δ) is δu−productive. For
(δȳ, ȳ) is clearly in Ω by (B.4), and x̄ is in g(δȳ, ȳ). So u(δȳ, ȳ) ≥ w(δȳ− x̄) >
w(0) = u(0, 0).

Proposition 3.7.3. If Ω is δ-productive, there is a triple (x̂, ŷ, p̂) such that
(x̂, ŷ, p̂) is a modified golden-rule equilibrium. Furthermore, ŷ is a non-trivial
stationary optimal output.

Proof. Since Ω is δ-productive, it is also δu-productive. So, using Theorem
3.4.2, there is a pair (ŷ, p̂) such that (ŷ, p̂) is a modified golden-rule and ŷ is a
non-trivial stationary optimal stock. That is, (ŷ, ŷ) ∈ Ω, p̂ ∈ Rn

+, and for all
(a, b) ∈ Ω,

u(ŷ, ŷ) + δp̂ŷ − p̂ŷ ≥ u(a, b) + δ p̂b̂− p a (3.64)

Let x̂ be an element of h(ŷ, ŷ). Then, (x̂, ŷ) ∈ Ω, and denoting (ŷ − x̂) by ĉ,
we have ĉ ≥ 0 and w(ĉ) = u(ŷ, ŷ).

Define θ(c) ≡ w(c) − p̂c for all c ∈ Rn
+, and π(x, y) ≡ δp̂y − p̂x for all

(x, y) ∈ Ω. Now, following the method of proof in Proposition 3.7.2, one
can establish that θ(c) ≤ θ(ĉ) for all c ∈ Rn

+, and π(x, y) ≤ π(x̂, ŷ) for all
(x, y) ∈ Ω. Hence, (x̂, ŷ, p̂) is a modified golden-rule equilibrium.

Using Proposition 3.7.1, {ŷ}∞0 is a stationary optimal program from ŷ. Since
ŷ is a non-trivial stationary optimal stock, it is also a non-trivial stationary
optimal output.

3.8 Weitzman’s Theorem on the NNP

Weitzman (1976) showed, in a continuous time optimal growth model, that at
each instant of time, the present value of the net national product at that in-
stant of time (evaluated at the current supporting prices) equals the maximum
discounted sum of utilities the economy is capable of achieving from that time
onwards. This is an interesting economic interpretation of the Bellman equa-
tion of dynamic programming (in continuous time). We provide here a discrete
time analog of Weitzman’s observation which, although it does not have the
force of his result (discrete-time does not allow us to conclude equality between
the two relevant magnitudes), might be of interest. Our approach to this result
is an application of the methods of duality theory, discussed in Sections 3.3 and
3.7 above.

Our framework of analysis is the “consumption model” described in Sec-
tion 3.7. If {x(t), y(t), p(t)} is a competitive plan, then the current value price
sequence {q(t)}, associated with the plan, is defined by: q(t) = p(t)/δt for t ≥ 0.

Theorem 3.8.1. If {x(t), y(t)}∞0 is an optimal plan from a sufficient vector
y ∈ Rn

++, and {p(t)}∞0 is a sequence with p(t) ∈ Rn
+ for t ≥ 0 such that
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{x(t), y(t), p(t)} is a competitive plan satisfying (3.60) and (3.61). Then, for
each s ≥ 1

V (y(s)) ≥ w(c(s)) + q(s)(x(s) − x(s − 1))
(1 − δ)

(3.65)

and

V (y(s)) ≤ w(c(s)) + q(s− 1)(x(s) − x(s− 1))
(1 − δ)

(3.66)

Proof. Pick any s ≥ 1, and use t = s+ 1 and y = y(s) in (3.60) to get

V (y(s+ 1)) − V (y(s)) ≥ q(s+ 1)(y(s+ 1) − y(s)) (3.67)

Use t = s and (x(s − 1), y(s)) ∈ Ω in (3.57) to get

q(s+ 1)(y(s+ 1) − y(s)) ≥ (q(s)/δ)(x(s) − x(s− 1)) (3.68)

Using (3.67) and (3.68),

V (y(s+ 1)) ≥ V (y(s)) + (q(s)/δ)(x(s) − x(s − 1)) (3.69)

By the principle of optimality, we also have

V (y(s)) = w(c(s)) + δV (y(s+ 1)) (3.70)

So, using (3.69) in (3.70), we get

V (y(s)) ≥ w(c(s)) + δV (y(s)) + q(s)(x(s) − x(s − 1))

Transposing terms,

(1 − δ)V (y(s)) ≥ w(c(s)) + q(s)(x(s) − x(s− 1))

which yields (3.65).
Following an entirely analogous method, we can use t = s and y = y(s+ 1)

in (3.60) to get

V (y(s)) − V (y(s+ 1)) ≥ q(s)(y(s) − y(s+ 1)) (3.71)

Use t = s− 1 and (x(s), y(s+ 1)) ∈ Ω in (3.57) to get

q(s)(y(s) − y(s+ 1)) ≥ (q(s− 1)/δ)(x(s− 1) − x(s)) (3.72)

Using (3.71) and (3.72),

V (y(s)) − V (y(s+ 1)) ≥ (q(s− 1)/δ)(x(s− 1) − x(s)) (3.73)

Transposing terms,

V (y(s+ 1)) ≤ V (y(s)) + (q(s− 1)/δ)(x(s) − x(s− 1)) (3.74)
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Using the principle of optimality (3.70), we have:

V (y(s)) ≤ w(c(s)) + δV (y(s)) + q(s− 1)(x(s) − x(s− 1))

Transposing terms,

(1 − δ)V (y(s)) ≤ w(c(s)) + q(s− 1)(x(s) − x(s− 1))

which yields (3.66).

Remark:
(i) Note that the hypothesis of the Theorem can be seen to be non-vacuous

by an appeal to Proposition 3.7.2 in Section 3.7. That is, given an optimal plan
{x(t), y(t)}∞0 from a sufficient vector y ∈ Rn

++, there exists a price sequence
{p(t)}∞0 with p(t) ∈ Rn

+ for t ≥ 0, such that {x(t), y(t), p(t)} is a competitive
plan satisfying (3.60) and (3.61).

(ii) Our theorem indicates that the maximum discounted sum of utilities
achievable from time s onwards [that is, V (y(s))] is trapped between two mag-
nitudes, each of which has some claim to be interpreted as the present-value
of the net national product in time period s. The difference between the two
magnitudes is the “current” price (q(s) or q(s−1)) used to evaluate investment
(x(s) − x(s− 1)) during the time period s.

3.9 Bibliographic Notes

Section 3.2:
The general framework described in this section was introduced into the liter-
ature by Gale (1967) and McKenzie (1968) in their contributions on optimal
growth when future utilities are undiscounted. The framework has great flexi-
bility, and a variety of intertemporal allocation problems can be reduced to this
framework. The well-known model, in which utility is derived from consump-
tion alone, is discussed in Section 3.7 as an illustration of this observation. For
other intertemporal allocation problems, see the exposition in Mitra (2000).
Section 3.3:
The section describes the basic price characterization results in the discounted
case, following the approach of Weitzman (1970). The approach can be adapted
to the undiscounted case as well; for this, see Peleg and Zilcha (1977) and
McKenzie (1986).

Theorem 3.3.1 does not require convex structures, but under non-convexities
it turns out to be not a useful tool for showing that a candidate program is
optimal, since in general one will not be able to obtain a price sequence at
which the program will satisfy the competitive conditions. When an optimal
program is interior, and the utility function is differentiable in the interior of
the transition possibility set, a necessary condition of optimality is the Ramsey-
Euler equation. In this case, it can also be shown that the optimal program
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satisfies a suitable transversality condition. However, the Ramsey-Euler condi-
tions together with this transversality condition is not sufficient for optimality
in non-convex models.

The results of this section can be generalized to a setting involving chang-
ing technology and tastes. For the general theory, see McKenzie (1974); for
applications to an aggregative model, see Mitra and Zilcha (1981).
Section 3.4:
The approach, consisting of establishing the existence of a discounted golden-
rule, as a step to establishing the existence of a non-trivial stationary optimal
stock, is due to Flynn (1980) and McKenzie (1982). Khan and Mitra (1986)
showed that this could be accomplished when continuity of the utility function
is replaced by upper semicontinuity, thereby making the result more widely ap-
plicable. They also showed that duality methods could be completely dispensed
with in establishing that the discounted golden-rule stock is a non-trivial sta-
tionary optimal stock. The approach of Peleg and Ryder (1974) is somewhat
similar, but their method applies only to the “consumption model”. The dy-
namic programming approach of Sutherland (1970) runs into the problem that
the stationary optimal stock obtained by the fixed point argument can be triv-
ial, and there is no obvious way to ensure non-triviality of the fixed point, even
when the economy is δu− productive.

Analogous results for the undiscounted case (involving the notion of a
golden-rule) are contained in Gale (1967), McKenzie (1968), Brock (1970) and
Peleg (1973). However, a major difference is that the existence of a golden-rule
can be shown without any use of fixed point methods.
Section 3.5:
The idea of replacing the transversality condition by a period-by-period con-
dition was first proposed by Brock and Majumdar (1988), who established the
appropriate result in the undiscounted case, for the “consumption model”. For
application of the same principle in other settings, see the collection of papers,
edited by Majumdar (1992).
Section 3.6:
The reachability condition proposed here is weak. Other related conditions,
such as local expandability and local contractability, proposed by Kurz and
Starrett (1970), are more restrictive. The example of the simple Leontief model
(as described by Gale (1960)) is an instance where the reachability condition
can be checked quite easily, but both local expandability and local contractabil-
ity fail.
Section 3.7:
Viewing the “consumption model” as a special case of the general framework
of Section 3.2 has the advantage that many duality results, developed for the
consumption model (see, especially, Peleg and Ryder (1972, 1974)), can be
obtained by an alternative and simpler route, and the assumptions needed
for either approach to work can thereby be compared. For a more complete
discussion, see Dasgupta and Mitra (1990).
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Section 3.8:
Weitzman’s Rule is almost exclusively discussed in the literature in the context
of continuous models. The discrete-time analog presented here indicates that
the argument involved is quite elementary, and is a good illustration of the
essential simplicity of duality methods.
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